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Abstract—The NeuroPass development project is a novel
application of brain-computer interfaces (BCI) in an everyday
computing environment. Using the Emotiv EEG headset, we
demonstrate how salient brain-wave features can be used to
encode neural passwords. Because such EEG waveforms suffer
from tremendous amounts of degradation in the channel, a
careful consideration of possible feature comparisons must be
made to properly interpret such signals. Unlike most popular
EEG tools, NeuroPass v1.0 does not require the use of any
external software dependencies and has been fully automated to
demonstrate feasibility and robust nature of such an encryption
scheme in a machine-learning environment.

Index Terms— Automatic recognition, brain-computer
interfaces, biometrics, EEG, neural channels.

I. INTRODUCTION

HE electroencephalogram (EEG) signal is a
measurement of the electrical activity present on an

individual’s scalp. EEG sensors measure voltage fluctuations
that typically arise from ionic current flows within neurons of
the brain. Although such types of evoked potentials have been
measured and studied since Vladimir Vladimirovich
Pravdich-Neminsky’s 1912 public demonstration on a
household canine, concrete analysis of such measurable
electronic potentials still remains in active development 1, 2.

The reason for this is primarily due to the nature of the EEG
signal itself. Since the surface scalp potential is the result of a
ensemble of neural oscillations, it is extremely difficult to
correlate particular voltage measurements with any particular
neuron. There has been much work in this field, known as
brain mapping, but the problem is almost intractable without a
sufficient computational framework 6, 7 to allow for the
unveiling of intimately connected neural activity. Many
research groups are taking this approach to develop analysis
methodologies 4, 5 .

The work presented here uses a functional understanding of
EEG brain-waves to model a framework that allows for coding
of information on neural channels.

In particular, by detecting the salient, or even non-obvious
higher-dimensional, signal features on the numerous channels
of an EEG, we demonstrate that we are able to code and
decode information. Examining the extent to which
information is able to be coded on these noisy neural channels
will be instrumental to understanding how the brain itself
handles ensemble neural signaling to the body’s muscles and
cells, and may provide the type of framework to fundamentally
progress the field of brain mapping.

II. DETECTION ON A NOISY CHANNEL

Perhaps the most pressing challenge in analyzing arbitrary
biological data is making dependable decisions from
fundamentally noisy data. Consider Figure 1b, where the AF3
EEG channel is measured using the Emotiv EEG sensor
headset. The electronic imprint of an individual’s “blink”
motor function is un-deniable; yet, it is both remarkable and
baffling how small electronic events causes such a
deterministic outcome. While it is hard to determine exactly
the amplitude of the neural signal, it is clear that the surface
potential (EEG) channel is quite noisy and thus requires
significant processing before useful information may be
readily extracted.

A. Removing the DC offset from sensor measurement

We developed several filtering functions that allow us to
process EEG data more effectively. First, in order to remove
the arbitrary DC offset introduced by the EEG measurement,
we constructed a first-order 0.178Hz high-pass filter as
instructed by the Emotiv headset manual. The resulting filter
(Figure 2a) removed the DC offset of approximately 4200μV.

B. Countering transient signal noise

The sampling rate of the Emotiv headset is 128 samples/sec.
Either due to inaccuracies in the measurement hardware, or
stochastic potential variations, the measured EEG signal has
significant high-frequency noise on nearly every channel.
Such a high signal-to-noise ratio impairs feature detection
accuracy and must be curtailed. We wrote a set of intuitive
first-order filters that we applied to the channel data (Figure
2b). The derivation of such filters and coefficients is given in
the appendix.

C. Feature detection

After processing our data into signals with discernible
neural events, we began the process of determining the
information present on the various channels. Our approach,
while simple, is intuitive and analyzes EEG signals from a
functional point of view; i.e. Our method does not employ a
biological model but, rather, determines signal features from
obvious signal deviations.
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Using such techniques, and for the purposes of our project,
we identified three such signal features that appeared on a
single noisy channel (Figure 3). Although the peaks are
obvious to the human eye, it is an algorithmic challenge to
correctly identify such events. Using our own masking
methods, we generated pulse codes that describe the sequence
of peaks present in any EEG channel (Figure 4). By applying
pulse code and pulse width modulation encoding schemes, we
demonstrated the ability to decode information on a neural
channel.

It should be noted here that the entire data process thus far is
entirely automatic and requires no human supervision. That is,
our algorithm is capable of detecting events directly from
recorded data, and can be directly ported to a remote-node
embedded application where such neural activity is detected
and reported, such as for authentication purposes 3, 8.

III. MATHEMATICS USED

A. Bilinear Transform

We developed the equation for analog filters, and then
applied the following bilinear transform on the Laplacian s
variable. T is the sampling period, 1/Fs. The derivation of a
simple first-order filter is shown as a proof of concept.
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B. High-pass filter

Derivation of a first-order high-pass RC digital filter:
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C. Low-pass filter

Derivation of a first-order low-pass CR digital filter:
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D. Thresholding:

Mathematical formalism of a threshold with parameter θ:
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E. Masking:

Pseudocode of producing a mask of finite width. Such an
operation can be understood as multiplying a signal by
numerous, offset, rectangle functions.

Output pulse code of the logical filter = Mask ( input).
C=Mput(x) if:set[j=0-3 input(x-j)]==logical code, else: 0.

IV. EMBEDDED PROCESSING

In order to increase the application of our algorithms, we
ported our Matlab library to C and have tested it on a TI
DSK6416.

We optimized our memory usage to work with the limited
hardware resources. In this case, additional heap memory from
the SD RAM was required to record the sampled stream and
store every channel for co-current processing on the TI board.
Such code can easily be tweaked to record fewer channels, but
our application maintains a quick portability to other platforms
because of the way we dynamically allocated the data. Our
algorithmic complexity is at most O(n2) for the logical steps,
but several of the functions have been optimized for O(nlogn)
performance. The methodology is representative of more
complex algorithms and coding schemes that may require
multiple channels.

V. EEG CHALLENGES

A. Sensors

We found that the electrical contacts provided with the
EPOC headset degraded significantly over time. A green
patina build-up, found to significantly limit the sensitivity and
detectability of extracted features, was abated with citric acid
and household vinegar treatments (Figure 5).

B. Consistent channel identification

Many errors in the automated PCM encoding scheme were
due to the irregularity of recorded EEG channels. Repeatable
placement of EEG electrodes is necessary, but not always
possible. An inclusion of channel identification would be
useful in this regard.

C. Robustness among different individuals

Seven test subjects were chosen in this study. Passwords
from each user was recorded as a single-trial event.

VI. CONCLUSION

.

In conclusion, our project automatically extracted neural
events corresponding to an individual’s blinking,
jaw-clenching, and eye-rolling activities with accuracy
ranging from 67% to 95% on single-trial inputs,
depending on the quality of the recorded data. By
identifying more features on noisy EEG channels 9, we can
increase the strength of our biometric and prevent side-channel
attacks, or use our knowledge to further the applications of
brain-mapping.
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VII. FUTURE WORK

In future work we are investigating the extent to which
information can be coded on such neural channels. Currently,
we are examining various possible automated generic mapping
techniques, applicable to computer vision systems.

APPENDIX

Our code is available for public download at
http://eeg.abhe.info .
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Figure 1: Data collection channels.

A) 14 EEG channels measured on Emotiv EPOC headset

B) Example of noisy AF3 channel signal showing
contamination and non-smooth data.
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Figure 2: Digital Filtering and Signal Processing

A) Removing DC offset with a low-pass Filter

B) Applying first-order high-pass filters to enunciate local
deviations

Figure 3: Detected features: blinks, clenches, eye-rolling
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Figure 4: Coding schemes demonstrated

A) Pulse Code Modulation (PCM): Each signal “beat” was
extracted. By performing analysis and statistics on each beat,
the logical code was determined.

B) Pulse Width Modulation (PWM): All amplitude peaks were
determined. The logical code was extracted by performing
sliding window averages and measuring periods of
high-event-frequency and low-event-frequency.

Figure 5: Copper oxidation and treatment

A) Green patina on copper (gold-plated) contacts

B) Treatment with citric acid and vinegar as solvents.

C) Clean contacts after cleaning procedure


